<u>DNL MATH</u>

EASTER DAY WEEKDAY BIRTHDATE AGE

Easter day

In 1800, Carl Friedrich Gauss, the German mathematician, produces formulas to calculate the date of Easter day. Here is a simplified method, valid from year 1900 to year 2099 of the Gregorian calendar. Write down and fill in the grid step by step.

- Choose a year and name it **A**.
- **R** is the rest of the Euclidian division of **A** by 4.
- **S** is the rest of the Euclidian division of **A** by 7.
- **T** is the rest of the Euclidian division of **A** by 19.
- $\mathbf{B} = (19 \text{ x } \mathbf{T}) + 24$
- **M** is the rest of the Euclidian division of **B** by 30.
- $\mathbf{C} = (2 \ge \mathbf{R}) + (4 \ge \mathbf{S}) + (6 \ge \mathbf{M}) + 5$
- **N** is the rest of the Euclidian division of **C** by 7.
- $\mathbf{P} = \mathbf{M} + \mathbf{N}$.

If P < 10, then Easter day will be on the (P + 22) of March.

If P > 9, then Easter day will be on the (P - 9) of April.

When will Easter day fall in year 2014 ?									
	Α	R	S	Т	В	Μ	С	Ν	Р

When will Easter day fall in year 2015 ?	A	R	S	т	в	М	C	
		A	5	•	2		J	

Р

N

<u>Weekday</u>

This method will help you find the weekday on which a preselected date falls.

Write down and fill in the grid step by step.

- **A** is the year.
- **D** is the difference between **A** and 1901.
- **Q** is the full quotient of the Euclidian division of **D** by 4.
- **N** is the number of days between January 1st and the end of the month preceding the date.
- J is the date.
- $\mathbf{S} = \mathbf{D} + \mathbf{Q} + \mathbf{N} + \mathbf{J} + 1$
- **R** is the rest of the Euclidian division of **S** by 7.

You will find the result in the following grid.

.....

If R is	0	1	2	3		4		5		6
The weekday is	Sunday	Monday	Tuesday	Wednesda	y T	Thursday		iday	Saturda	
Find the weekday of	this date :	24 june 20	13	Δ	Л	0	N	т	S	R
				1	D	×	1	J	0	ĸ
Find the weekday of	this date :	25 decem	ber 2013	Δ	D	0	N	т	s	D
				А	D	Q	1	J	3	K

Your teacher's Birthdate

"You are going to guess my birthdate !

I will have to calculate the following so as to give you a clue :

- Multiply the day when I was born by 12,
- Then multiply the month by 37,
- Finally add both totals and give you the result **R**."

Write down and fill in the grid step by step.

Your teacher's birthdate is (day/month only) :

.....

- **M** (month) is the rest of Euclidian division of **R** by 12,
- $\mathbf{S} = \mathbf{R} 37 \ge \mathbf{M}$
- \mathbf{D} (day) is the full quotient of the Euclidian division of \mathbf{S} by 12.

 R
 M
 S
 D

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

How old is your teacher ?

"You are going to guess my age !

I will have to calculate the following so as to give you a clue :

- Pick a number from 1 to 9.
- Multiply this number by 9.
- Subtract this last result to 10 times your age and give me your result R."

Write down and fill in the grid step by step.

- **U** is the unit digit of number **R**.
- **D** is the number of tens of number **R**.
- $\mathbf{A} = \mathbf{U} + \mathbf{D}$.

I give you the clue :

The result is R = 353

А

I give you the clue : <u>The result is R = 351</u>