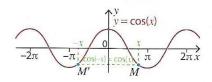
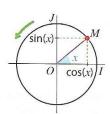
Les fonctions cosinus et sinus

Connaître les fonctions cosinus et sinus

- La fonction **cosinus** est définie et dérivable sur \mathbb{R} .
- Elle est paire et périodique de période 2π
- Pour tout réel x, $-1 \le \cos(x) \le 1$.
- Pour tout réel x, $\cos'(x) = -\sin(x)$.

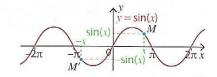


 $\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$



A

- La fonction sinus est définie et dérivable sur \mathbb{R} .
- Elle est impaire et périodique de période 2π .
- Pour tout réel $x_i 1 \le \sin(x) \le 1$.
- Pour tout réel x, $\sin'(x) = \cos(x)$.



 $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$

Connaître les valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	
sin(x)	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	

Dériver des fonctions trigonométriques

Soient $f: x \mapsto \cos(u(x))$ et $g: x \mapsto \sin(u(x))$.

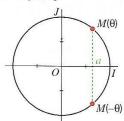
Alors:

 $f'(x) = -u'(x)\sin(u(x))$ et $g'(x) = u'(x)\cos(u(x))$.

Résoudre des équations trigonométriques

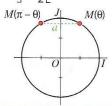
 $cos(x) = a sur [-\pi; \pi]$

Si -1 < a < 1, alors $\mathcal{G} = \{-\theta; \theta\}$, avec θ tel que $\cos(\theta) = a$ et $\theta \in]0$; $\pi[$.



• $\sin(x) = a \sup [-\pi; \pi]$

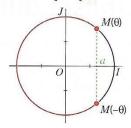
Si 0 < a < 1, alors $\mathcal{G} = \{\pi - \theta; \theta\}$, avec θ tel que $\sin(\theta) = a$ et $\theta \in \left]0; \frac{\pi}{2}\right[$.



Résoudre des inéquations trigonométriques

• $cos(x) \leq a sur[-\pi; \pi]$

Si -1 < a < 1, alors $\mathcal{G} = [-\pi; -\theta] \cup [\theta; \pi]$ avec θ tel que $\cos(\theta) = a$ et $\theta \in [0; \pi[$.



• $\sin(x) \leq a \sup[-\pi; \pi]$

Si 0 < a < 1, alors $\mathcal{G} = [-\pi; \theta] \cup [\pi - \theta; \pi]$, avec θ tel que $\sin(\theta) = a$ et $\theta \in \left[0; \frac{\pi}{2}\right]$.

