Vecteurs de l'espace

Représenter des vecteurs de l'espace

- On associe le **vecteur** \overrightarrow{AB} à la translation qui transforme A en B.
- $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow ABDC$ est un parallélogramme.
- Somme de deux vecteurs : $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, où \overrightarrow{ABDC} est un parallélogramme.

• Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

• Le vecteur $\vec{v} = k\vec{u}$ est le vecteur qui a la même direction que le vecteur \vec{u} ; le même sens que \vec{u} si k > 0, le sens contraire de \vec{u} si k < 0; pour norme $|k| \times \vec{u}$. Les vecteurs \vec{u} et $\vec{v} = k\vec{u}$ sont **colinéaires**.

Plans de l'espace

Caractériser un plan de l'espace

- \vec{u} , \vec{v} (non colinéaires) et \vec{w} sont **coplanaires** lorsqu'il existe deux réels x et y tels que : $\vec{w} = x\vec{u} + y\vec{v}$.
- Soient \overrightarrow{AB} et \overrightarrow{AC} non colinéaires. Le plan (\overrightarrow{ABC}) est l'ensemble des points M tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$, où $x \in \mathbb{R}$ et $y \in \mathbb{R}$. \overrightarrow{AB} et \overrightarrow{AC} sont des vecteurs directeurs du plan (\overrightarrow{ABC}) et $(\overrightarrow{AB}, \overrightarrow{AC})$ est une base de ce plan.

Coordonnées dans l'espace

Droites de l'espace

Caractériser une droite de l'espace

La droite (AB) est l'ensemble des points M tels que $\overrightarrow{AM} = k\overrightarrow{AB}$, où $k \in \mathbb{R}$. \overrightarrow{AB} est un vecteur directeur de la droite (AB), ainsi que tous les vecteurs non nuls colinéaires à \overrightarrow{AB} .

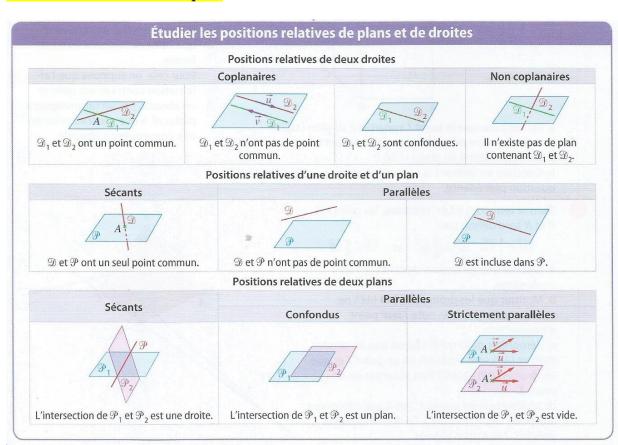
Déterminer des coordonnées

• Dans le **repère** (O; i, j, k), on a :

$$\overrightarrow{OM} = x_M \vec{i} + y_M \vec{j} + z_M \vec{k}; \quad \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}.$$

• Milieu de [AB]: $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$

Positions relatives dans l'espace



Savoir caractériser l'orthogonalité

Avec des vecteurs directeurs

- d et d' sont orthogonales si un vecteur directeur de l'une est orthogonal à un vecteur directeur de l'autre.
- Si deux droites sont perpendiculaires, alors elles sont orthogonales. La réciproque est fausse car deux droites orthogonales ne sont pas toujours coplanaires.

Avec des vecteurs directeurs

- La droite d de vecteur directeur \vec{w} et le plan \mathcal{P} de base (\vec{u}, \vec{v}) sont **orthogonaux** si \vec{w} est orthogonal à la fois à \vec{u} et à \vec{v} .
- Si une droite est orthogonale à un plan, alors elle est orthogonale à toute droite de ce plan.

Avec un vecteur normal

- Un vecteur \vec{n} est normal au plan \mathcal{P} de base (\vec{u}, \vec{v}) s'il est non nul et orthogonal à la fois à \vec{u} et \vec{v} .
- Une droite est orthogonale à un plan si et seulement si un vecteur directeur de cette droite est colinéaire à un vecteur normal à ce plan.

Caractériser l'orthogonalité de deux droites

Caractériser l'orthogonalité d'un plan et d'une droite

Caractériser l'orthogonalité de deux vecteurs

 \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux $\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow AB \times AC \times \cos(\widehat{BAC}) = 0$.

Savoir caractériser le parallélisme

Caractériser le parallélisme d'une droite et d'un plan

Une droite est parallèle à un plan si et seulement si un vecteur directeur de cette droite est orthogonal à un vecteur normal à ce plan.

- ullet Un plan ${\mathcal P}_1$ de vecteur normal $\vec n_1$ est **parallèle** à un plan \mathcal{P}_2 de vecteur normal \vec{n}_2 si et seulement si \vec{n}_1 et \vec{n}_2 sont colinéaires.
- Si deux plans sont orthogonaux à une même droite, alors ils sont parallèles entre еих.

Savoir calculer des distances avec ou sans base/repère de l'espace

Calculer des distances H est le projeté ortho-Distance gonal de A sur ${\mathcal P}$ et la de A à F distance de A à \mathcal{P} est : $AH = \frac{|\overrightarrow{AB} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}.$ où $B \in \mathcal{P}$ et \vec{n} est un vecteur normal à \mathcal{P} . • H est le projeté orthou A ×B gonal de A sur d et la dis-Distance H tance de A à d est : $AH = \left\| \overrightarrow{AB} - \frac{\overrightarrow{AB} \cdot \overrightarrow{u}}{\|\overrightarrow{u}\|^2} \overrightarrow{u} \right\|,$ deAàd où $B \subseteq d$ et \vec{u} est un vecteur directeur de d.

Calculer dans une base et un repère orthonormés

• (i, j, k) est une base orthonormée signifie que :

$$\overrightarrow{i \cdot j} = \overrightarrow{i \cdot k} = \overrightarrow{j \cdot k} = 0 \text{ et } ||\overrightarrow{i}|| = ||\overrightarrow{j}|| = ||\overrightarrow{k}|| = 1.$$

$$\overrightarrow{i \cdot j} = \overrightarrow{i \cdot k} = \overrightarrow{j \cdot k} = 0 \text{ et } ||\overrightarrow{i}|| = ||\overrightarrow{j}|| = ||\overrightarrow{k}|| = 1.$$

 $(O; \vec{i}, \vec{j}, \vec{k})$ est alors un **repère orthonormé** de l'espace.

Soient
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$.

- Produit scalaire: $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$.
- Norme : $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$.
- $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$