Représentation paramétrique d'une droite

Déterminer et exploiter une représentation paramétrique d'une droite

L'espace est muni d'un repère orthonormé.

La droite \mathfrak{D} de vecteur directeur \overrightarrow{u} et passant par le point $A(\alpha; \beta; \gamma)$ a pour **représentation paramétrique**:

$$\begin{cases} x = \alpha + at \\ y = \beta + bt \end{cases}$$
, où t décrit l'ensemble des réels.
$$z = \gamma + ct$$

- Chaque valeur de *t* permet de déterminer les coordonnées d'un point de la droite. Réciproquement, à chaque point de la droite correspond une valeur de *t*.
- Une droite admet une infinité de représentations paramétriques : en prenant un autre vecteur directeur ou un autre point de cette droite, on obtient une nouvelle représentation paramétrique.

Equation cartésienne d'un plan

Déterminer une équation cartésienne d'un plan en identifiant les coefficients

L'espace est muni d'un repère orthonormé.

• Le plan \mathcal{P} passant par le point $A(x_A; y_A; z_A)$ et

de vecteur normal
$$\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 est l'ensemble des points

de l'espace dont les coordonnées (x; y; z) vérifient l'équation :

$$ax + by + cz + d = 0$$
, où $d = -ax_A - by_A - cz_A$.

Cette équation est une **équation cartésienne** du plan \mathcal{P} .

• Un plan admet une infinité d'équations cartésiennes.

Déterminer une équation cartésienne d'un plan à l'aide du produit scalaire

L'espace est muni d'un repère orthonormé. On considère le plan ${\mathcal P}$ passant par le point

$$A(x_A ; y_A ; z_A)$$
 et de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

• Un point M(x; y; z) de l'espace appartient au plan \mathcal{P} si et seulement si :

$$\overrightarrow{AM} \cdot \overrightarrow{n} = 0.$$

• L'expression de ce produit scalaire nul en fonction de x, y et z permet d'obtenir une **équation cartésienne** du plan \mathcal{P} .